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AN OPEN SET OF MAPS FOR WHICH EVERY POINT
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(Communicated by Mary Rees)

Abstract. We consider a class of nonhyperbolic systems, for which there
are two fixed points in an attractor having a dense trajectory; the unstable
manifold of one has dimension one and the other’s is two dimensional. Un-
der the condition that there exists a direction which is more expanding than
other directions, we show that such attractors are nonshadowable. Using this
theorem, we prove that there is an open set of diffeomorphisms (in the Cr-
topology, r > 1) for which every point is absolutely nonshadowable, i.e., there
exists ε > 0 such that, for every δ > 0, almost every δ-pseudo trajectory
starting from this point is ε-nonshadowable.

1. Introduction

In study of chaotic systems, a researcher is often obliged to rely on numerical
simulations because direct analytical methods are not available. To ensure their va-
lidity, it is crucial that numerical trajectories stay close to, in other words, they are
shadowed (see Section 2 for definition) by, true trajectories; otherwise, the meaning
of numerical results is far from obvious. Although compact hyperbolic invariant
sets are shadowable as proved by Anosov [2] and Bowen [4], virtually all chaotic
attractors that scientists encounter are nonhyperbolic. For example, the “Hénon”
strange attractors constructed by Benedicks and Carleson [3] are not hyperbolic:
the angle between stable and unstable manifolds is not bounded away from zero.
There seems to be a feeling among many mathematicians that nonhyperbolicity
generally implies nonshadowability, but there are counterexamples. Nonhyperbolic
attractors can have the shadowing property. Let Fλ be a one parameter family
of maps or diffeomorphisms with a periodic attractor that undergoes a cascade of
period doublings, limiting on the so-called “Feigenbaum” parameter λc (which was
first described by Myrberg [17]). The corresponding “Feigenbaum” attractor at
this value is not hyperbolic, but it does satisfy the shadowing property. Further-
more, if the above example lies on a space M1, and on another space M2 there is a
hyperbolic attractor, then the attractor for the product system is chaotic and has
the shadowing property, but the attractor is not hyperbolic. For a simpler exam-
ple, Coven, Kan and Yorke [9] have shown that tent maps are shadowable for all
parameter values (i.e. , the absolute value of the slopes) between 1 and 2 except for
a set having zero Lebesgue measure. (Indeed, this paper discusses tent maps with
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slopes between
√

2 and 2, though it is trivially extendible to slopes between 1 and
2. They also show that the set of parameters for which the map is nonshadowable
is uncountable.) In their case, the attractor is the whole space. Similarly, in the set
of parameter values where the logistic map has a chaotic attractor there is a dense,
uncountable set for which it is shadowable and a dense uncountable set for which
it is not. In the window of parameter values with an attracting periodic orbit, it
is shadowable; see Smale and Williams [23] for the period 3 case, where they show
the invariant set of points not in the period 3 basin of the attractor is hyperbolic.

Several papers [12, 13, 21, 7, 8, 5, 6, 20] have given methods to rigorously verify
whether numerical trajectories are shadowed by true trajectories. Results obtained
from applying such methods to nonhyperbolic maps on one and two dimensional
phase spaces [12, 13, 21] suggest that such systems are nonshadowable. The critical
point of the logistic map is analogous to points of the chaotic attractors of Hénon
maps where the stable and unstable sets are tangent. However, the Hénon attractor
appears to have uncountably many such points, so the analysis is more complicated
and the shadowing properties are yet unresolved.

Our goal is to discuss another mechanism for nonshadowability which we call
“dimension variability”, i.e. , an attractor (with a dense trajectory) has at least
two hyperbolic periodic orbits whose unstable manifolds have different dimensions.
Using this phenomenon, we present an open set of maps (or diffeomorphisms) for
which every point is absolutely nonshadowable (see Section 2 for definition). In the
next section we will analyze geometrically how dimension variability is an obstacle
for shadowing. Some of our ideas have been sketched in Poon et al. [18].

Dimension variability is related to studies of finite shadowing time — i.e. , start-
ing from an initial point, for how long can the pseudo trajectory be shadowed by
a true trajectory (the shadowing distance is comparable to the size of the attrac-
tor) — for nonhyperbolic systems. It has been conjectured [12, 13] that for typical
dissipative maps being iterated with numerical accuracy δ, the average shadowing
time is of the order 1/

√
δ. This conjecture is supported by numerical studies of the

logistic map and Hénon map. Recent studies discuss a new type of map in which
almost every trajectory has the following property. The Lyapunov exponents are
non-zero, but there are arbitrarily long segments of the trajectory for which the
number of the approximate “finite-time” Lyapunov exponents that are positive is
different from the number of actual positive exponents. For such maps, the aver-
age shadowing time can be much shorter, meaning that the shadowing difficulty is
more serious than it is for the logistic map and Hénon map. Systems with dimen-
sion variability have this property, because almost every trajectory has arbitrarily
long segments in which it remains near each of the periodic orbits.

2. Main theorem

Let M be an m-dimensional Riemannian manifold and f:M → M be a C1 map.
Let A be a compact invariant set; we say A is Lyapunov stable if there exists a
family of neighborhoods Ui of A such that

⋂
i Ui = A and f(Ui) ⊂ Ui for all i. We

say A is an attractor, if i) there exists an neighborhood U such that, for every
x ∈ U , the positive limit set ω(x) ⊂ A; ii) A is Lyapunov stable; and iii) there exists
p ∈ M such that ω(p) = A. If A is an attractor, we say the set {p ∈ M : ω(p) ⊂ A}
is the basin of A. Notice that the usual definition of an attractor only requires
the first condition, but then it would include the pathological cases where nearby
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orbits have many intermediate iterates that stay away from the invariant set. We
exclude such pathological cases by adding condition ii) in our definition. We also
add condition iii) to avoid unnecessarily large attractors. For example, the whole
manifold is an attractor under the usual definition, whereas under our definition it
is an attractor only if there exists an orbit that is dense everywhere in the manifold.

Given δ, ε > 0, we say x̄ = (xi)b
i=a is a δ-pseudo trajectory if d(f(xi), xi+1) < δ

whenever a ≤ i < b. Let Ωx,δ be the set of δ-pseudo trajectories that start from
x. If we consider xi+1 as being chosen at random from a uniform distribution in
B(x, δ) (from now on, we use B(x, δ), resp. B(V, δ), to denote the δ-neighborhood
of a point x, resp. a subset V of M), then Ωx,δ forms a Markov chain with each
δ-pseudo trajectory in Ωx,δ as a sample sequence [10]. We say “almost every δ-
pseudo trajectory” has a property P if the event P occurs with probability 1 for
this Markov chain. Similar ideas have been discussed by Young [24] and Kifer [15].

Given γ > 0, we say a pseudo orbit (xi)∞i=0 comes within γ of a finite pseudo
orbit (yi)n

i=0 if there exists ` ≥ 0 such that d(x`+i, yi) < γ, for 1 ≤ i ≤ n. We have
the following observation.

Proposition 2.1. Let A be an attractor and U be the basin of A. Let x ∈ U .
Assume that δ > 0 is sufficiently small that there exists a compact neighborhood
V ⊂ U of A such that x ∈ V and f(B(V, δ)) ⊂ V . Let ȳ := (y0, . . . , yn) be a δ-
pseudo trajectory in B(A, δ). Then for each γ > 0, almost every x̄ := (xi)∞i=0 ∈ Ωx,δ

comes within γ of ȳ.

Proof. Denote by Ex the event that a pseudo orbit x̄ ∈ Ωx,δ comes within γ of ȳ.
For each z ∈ V , there exist an open neighborhood Uz of z, a positive number σz,
and a positive integer nz such that, for each point z′ ∈ Uz, the probability for a
finite δ-pseudo trajectory (zi)nz

i=0 with z0 = z′ to come within γ of ȳ is greater than
σz. Since V is compact, there exists a finite set {z(1), . . . , z(k)} ⊂ V such that⋃k

i=1 Uz(i) ⊃ V . This implies that there exist σ∗ > 0 and n∗ > 0 such that, for
every z ∈ V , the probability for a δ-pseudo trajectory (zi)n∗

i=0 with z0 = z to come
within γ of ȳ is greater than σ∗. Note that if x ∈ V and x̄ ∈ Ωx,δ, then {xi}∞i=0 ⊂ V .
Each of the finite δ-pseudo trajectories (xi)

jn∗+n∗−1
i=jn∗ , 0 ≤ j < ∞, comes within γ

of ȳ with probability greater than σ∗. Since there are infinitely many independent
trials, P (Ex) = 1.

A δ-pseudo trajectory x̄ := (xi)b
i=a is ε-shadowed by y if d(xi, f

i(y)) < ε when
a ≤ i ≤ b. We say a point x is absolutely nonshadowable if there exists ε > 0
such that, for every δ > 0, almost every δ-pseudo trajectory (xi)∞i=0 ∈ Ωx,δ is ε-
nonshadowable, i.e. , it cannot be ε-shadowed by any true trajectory. Of course,
Ωx,δ includes true trajectories, and those are trivially shadowable; hence we can
only require that almost every δ-pseudo trajectory is ε-nonshadowable.

Before we state our theorem, we need to introduce some notions, which play
an important role in the proof of the well-known Hadamard-Perron Theorem [11].
(An excellent presentation of the proof can be found in [14], pages 242–257.) Let
Sk = {(u, v) ∈ Rk ⊕ Rm−k : |u| ≤ |v|}. We say Sk is the standard k-cone in
Rm. A set C0 ⊂ Rm is said to be a k-cone if C0 is isomorphic to Sk up to a linear
change of variables. Let C ⊂ TM . We write Cx := C ∩TxM . Assume for x ∈ A, Cx

is nonempty and x 7−→ Cx is continuous on A in the Hausdorff metric. We say C
is a k-cone field on A if, for each x ∈ A, Cx is a k-cone. We say C is positively
invariant if (Df)Cx ⊂ intCf(x) ∪ {0} for all x ∈ A.
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We say an invariant set A has dimension variability if there exist hyperbolic
periodic points p1, p2 in A, such that 0 < dim(Wu(p1)) < dim(Wu(p2)). Below we
assume for convenience that these orbits are fixed points.

Theorem 2.2. Let f :M → M be a C1 map. Assume f satisfies the following
properties:

1. f has an attractor A, and U is its basin;
2. (dimension variability) there exist hyperbolic fixed points p1, p2 in A, such that

0 < dim(Wu(p1)) < dim(Wu(p2));
3. Wu(p1) = A;
4. write k := dim(Wu(p1)); there exists a positively invariant k-cone field C on

A.
Then every point in U is absolutely nonshadowable.

Remark 2.3. If f is a diffeomorphism, then the following condition is equivalent to
Condition 4 in Theorem 2.2:

4′. There exists a continuous splitting TAM = E1 ⊕ E2, where dim(E1) =
dim(Wu(p1)), and positive constants K, λ and µ with λ < µ, such that: i) Df(Ei) =
Ei, i = 1, 2; ii) for all v ∈ E1 and n ≥ 0, |Df−n(v)| ≤ Kµ−n|v|; and iii) for all
v ∈ E2 and n ≥ 0, |Dfn(v)| ≤ Kλn|v|. Note in particular λ need not be less than
1.

Remark 2.4. We have cited literature discussing shadowing failure due to tangen-
cies of stable and unstable manifolds. Condition 4 guarantees there are no tangen-
cies. Hence dimension variability is a distinct mechanism. In particular, Condition
4 prevents Wu(p1) from being tangent to W s(p2) at any point in Wu(p1)∩W s(p2).
If f is a diffeomorphism, then, at each x ∈ Wu(p1) ∩ W s(p2), Wu(p1) is tangent
to E1(x), and W s(p2) is tangent to a subspace of E2(x). Since the angle between
E1 and E2 is bounded away from 0, Wu(p1) cannot be tangent to W s(p2) at any
point.

Remark 2.5. Condition 4 is also a uniform condition to make it possible for us to
obtain a proof. We do not know if the result is true without Condition 4.

To simplify notation, we prove Theorem 2.2 for the case dim(Wu(p1)) = 1 and
dim(Wu(p2)) = 2. The proof for the other cases follows in the same manner.

For the rest of this section, we assume all the conditions in Theorem 2.2 are
satisfied. We need some notation before proving the theorem. For i = 1, 2, write
Eu(pi) ⊂ TpiM for the unstable space (i.e. , with respect to Df) at pi, and Wu(pi)
for the unstable manifold of pi. For ε > 0, let Wu

ε (p1) be the local unstable manifold
of p1. For x ∈ A, write C(x, ε) := {u ∈ Cx : |u| ≤ ε}, and let expx : TxM → M
be the exponential map induced by the Riemannian metric. If ε is sufficiently
small, then expx maps C(x, ε) diffeomorphically to a subset expxC(x, ε) in M . For
convenience, we do not distinguish between expxC(x, ε) and C(x, ε) in our notation.

The following lemmas are needed in the proof of Theorem 2.2.

Lemma 2.6. (a) There exists ε0 > 0 such that if x ∈ A, then

f(C(x, ε)) ∩B(f(x), ε) ⊂ int(C(f(x), ε)) ∪ {f(x)},
for each 0 < ε < ε0.

(b) Moreover, there exists α > 0, such that if x ∈ A, w ∈ B(f(x), ε), and
w 6∈ intC(f(x), ε), then d(w, f(C(x, ε))) ≥ αd(w, f(x)).
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Proof. Given x ∈ A, ε > 0, and v ∈ TxM , |v| = 1, let l(x, v, ε) = {expx(tv) : 0 ≤
t ≤ ε}. If v ∈ Cx, then Dfxv ∈ intCf(x). Therefore there exists εx,v > 0 such that
f(l(x, v, ε)) ∩ B(f(x), ε) ⊂ intC(f(x), ε) ∪ {f(x)} for 0 < ε < εx,v. By continuity,
there exists εx > 0 such that, for all v ∈ Cx with |v| = 1, f(l(x, v, ε))∩B(f(x), ε) ⊂
intC(f(x), ε)∪ {f(x)} for 0 < ε < εx. Also by continuity, there exists ε0 such that,
for all x ∈ A and 0 < ε < ε0, f(C(x, ε)) ∩B(f(x), ε) ⊂ intC(f(x), ε) ∪ {f(x)}.

In the following we prove the second part of the lemma. Since DfxCx ⊂
intCf(x) ∪ {0f(x)} and Dfx is a linear map, there exists γ such that if v ∈ Tf(x)M
and v 6∈ intCf(x), then d(v, DfxCx) ≥ γ|v|. Since expx is a local diffeomorphism,
the previous argument implies statement (b).

Lemma 2.7. There exist ε0, η > 0 and λ > 1 with the following properties.
(a). On B(p2, ε0) there exists an invariant two dimensional C0-(unstable) fo-

liation such that if y, z are in the same leaf and {f i(y), f i(z)}n
i=0 ⊂ B(p2, ε0),

then
d(f i(y), f i(z)) ≥ ηλid(y, z)

for 0 ≤ i ≤ n.
(b). On B(p1, ε0) there exists an invariant (m − 1)-dimensional C0-(stable)

foliation such that if y, z are in the same leaf and {f i(y), f i(z)}n
i=0 ⊂ B(p1, ε0),

then
d(f i(y), f i(z)) ≤ (ηλi)−1d(y, z)

for 0 ≤ i ≤ n.

Proof. We only prove the first part. Similar arguments apply to the second part.
If f is a linear map, then we define the leaf through each x ∈ B(p2, ε0) by

x + Wu(p2). The foliation thus defined satisfies property (a).
In general, f is locally conjugate to a linear map. Note that property (a) is

preserved by conjugacies. The proof is complete.

The foliations given by Lemma 2.7 are not unique. From now on, we fix one
unstable foliation on B(p2, ε0) and one stable foliation on B(p1, ε0). We write
Wu(y; p2, ε0) for the leaf of this unstable foliation through y ∈ B(p2, ε0) and
W s(z; p1, ε0) for the leaf of this stable foliation through z ∈ B(p1, ε0).

Lemma 2.8. There exists ε0 > 0 such that the following statement is true for each
0 < ε < ε0 and δ > 0.

Let n ∈ N and x ∈ B(p2, ε) be such that x, f(x), . . . , fn(x) ∈ B(p2, ε). Then
there exists w ∈ Wu(x; p2, ε) such that i) d(x, w) ≤ δ; and ii) f i(w) 6∈ C(f i(x), ε),
for 0 ≤ i ≤ n. Furthermore, if δ is sufficiently small, then w can be chosen so that
d(x, w) ≥ δ/2.

Proof. There exists ε0 > 0 such that, for each x ∈ M , f maps B(x, ε0) diffeomorphi-
cally onto its image f(B(x, ε0)). Let x, f(x), . . . , fn(x) ∈ A∩B(p2, ε0). Write W :=⋂n

i=0 f−i(B(f i(x), ε0)). Then W contains a neighborhood of x. Therefore fn(W )
contains a neighborhood of fn(x). In particular, there exists a curve l ⊂ W passing
through fn(x) such that l ⊂ Wu(fn(x); p2, ε) and l ∩ C(fn(x), ε0) = {fn(x)}. Let
l′ = f−n(l) ∩W . Then l′ is a curve passing through x and l′ ⊂ Wu(x; p2, ε). For
each w ∈ l′ different from x, f i(w)(0 ≤ i ≤ n) is not contained in C(f i(x), ε). In
particular, w can be chosen so that d(w, x) ≤ δ. If δ is sufficiently small, then δ
can be chosen so that d(w, x) ≥ δ/2.
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We say a δ-pseudo trajectory x̄ is elementary if there exists i0, such that
f(xi) = xi+1 for all i except for i = i0. The next lemma is the key step toward the
final proof of Theorem 2.2.

Lemma 2.9. There exist ε0 > 0 and n0 > 0 such that for all 0 < ε′ < ε0 and
δ > 0, there exist x ∈ Wu

ε′(p1) and an elementary δ-pseudo trajectory x̄ = (xi)n0
i=0,

where x0 = x, such that x̄ cannot be ε′-shadowed by any y ∈ C(x, ε′).

Proof. Let ε0 be a small number such that the next two conditions are satisfied:
1. Lemmas 2.6– 2.8 hold.
2. f restricted to B(p1, ε0) is one-to-one, and Wu

ε0(p1) ⊂ f(Wu
ε0(p1)).

Fix ε′ ∈ (0, ε0). Given δ > 0, there exists n1, such that ηαδλn1 > 2ε′, where α is
as in Lemma 2.6 and η and λ are as in Lemma 2.7. Let s > 0 be sufficiently small,
such that

n1⋃
i=0

f i(B(p2, s)) ⊂ B(p2, ε
′).

Choose x′ ∈ Wu(p1), such that f(x′) ∈ B(p2, s).
In the following we will introduce a small perturbation at f(x′) such that the

perturbed trajectory is not shadowable. Note that Wu(p2) is two dimensional
whereas Wu(p1) is only one dimensional. When the trajectory is perturbed away
from Wu(p1), the trajectory diverges from Wu(p1). We will see this leads to non-
shadowability.

We first prove that there exists a δ-pseudo trajectory starting from x′ which can
not be ε′-shadowed by any y ∈ C(x′, ε′). By Lemma 2.8, for every δ > 0, there exists
w ∈ Wu(f(x′); p2, ε

′) such that i) d(f(x′), w) ≤ δ; and ii) f i(w) 6∈ C(f i+1(x′), ε′)
for 0 ≤ i ≤ n1. For the purpose of shadowing, we let d(f(x′), w) ≥ δ/2. Therefore

d(fn1(w), fn1+1(C(x′, ε′))) ≥ d(fn1(w), f(C(fn1(x′), ε′)))

≥ αd(fn1w, fn1+1(x′))
≥ αηλn1d(w, f(x′))

≥ αηλn1δ

2
> ε′.

In the above estimation, we have used Lemmas 2.6– 2.8.
The elementary δ-pseudo trajectory (x′, w, f(w), · · · , fn1(w)) cannot be ε′-

shadowed by any y ∈ C(x′, ε′).
If x′ ∈ Wu

ε′(p1), then by letting x equal x′ we are done. Otherwise, there exist
x ∈ Wu

ε′(p1) and n2 > 0, such that x′ = fn2(x). Define xi = f i(x) for 0 ≤ i ≤ n2,
and xi = f i−n2−1(w) for i ≥ n2 +1. Let n0 = n1 + n2 +1; then x̄ = (xi)n0

i=0 cannot
be ε′-shadowed by any y ∈ C(x, ε′).

Let ε0, ε′, x, x̄ and n0 be as in Lemma 2.9. For i < 0, let xi be the unique
point in Wu

ε0(p1) ∩ f−1(xi+1). Define x̄i := (xj)n0
j=i. Since x ∈ Wu(p1), xi → p1 as

i → −∞. Note that, for each i < 0, x̄i cannot be ε′-shadowed by any y ∈ C(xi, ε
′).

The next two lemmas extend the result in Lemma 2.9. They are needed to finish
the proof.

Lemma 2.10. Let ε0, x, x̄ and n0 be as in Lemma 2.9. Then there exists σ > 0,
such that x̄ is not ε-shadowed by any y ∈ B(C(x, ε), σ), for 0 < ε < ε0

2 .
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Proof. Fix ε′ ∈ (0, ε0). Let σ > 0 be sufficiently small such that

max
1≤i≤n0

d(f i(y), f i(z)) < ε′/2

whenever d(y, z) < σ. If y ∈ B(C(x, ε′), σ), then there exists z ∈ C(x, ε′) such that
d(y, z) < σ. From Lemma 2.9, d(fn0(z), xn0) > ε′. Therefore

d(fn0(y), xn0) ≥ d(fn0(z), xn0)− d(fn0(y), fn0(z))

> ε′ − ε′

2
=

ε′

2
.

x̄ is not ε′/2-shadowed by y. Let ε = ε′/2; then the proof is complete.

Lemma 2.11. Define x̄i, i < 0, as in the paragraph that follows Lemma 2.9. Let
ε0 and ε be as in Lemma 2.10. Then there exists n3 > 0, such that x̄−n3 cannot be
ε-shadowed by any y ∈ M .

Proof. Given y ∈ B(p1, ε) and n > 0 such that {f i(y)}n
i=0 ⊂ B(p1, ε0), there

exists z ∈ W s(y; p1, ε) ∩Wu
ε (p1) such that {f i(z)}n

i=0 ⊂ B(p1, ε0). By Lemma 2.7,
d(f i(y), f i(z)) ≤ (ηλi)−1d(y, z) for 0 ≤ i ≤ n. Therefore d(f i(y), Wu

ε (p1)) ≤
(ηλi)−1ε.

Let y ∈ M and n3 ≥ 1 be such that d(f i(y), xi−n3) < ε for 0 ≤ i ≤ n3. Note
that x ∈ Wu

ε (p1). From previous arguments,

d(fn3(y), C(x, ε)) ≤ d(fn3(y), Wu
ε (p1)) ≤ (ηλn3 )−1 · ε.

We can choose n3 to be sufficiently large that (ηλn3 )−1 · ε < σ. Apply Lemma 2.10;
then x̄ is not ε-shadowed by fn3(y). Therefore x̄−n3 is not ε-shadowed by y.

Proof of Theorem 2.2. In the previous lemmas, we have proved that the δ-pseudo
trajectory

x̄−n3 = (x−n3 , x−n3+1, . . . , x, w, f(w), . . . , fn1(w))

cannot be ε-shadowed by any true trajectory. Indeed, same arguments can prove
that there exists γ > 0, such that every δ-pseudo trajectory that comes within γ of
x̄−n3 cannot be ε-shadowed by any true trajectory. Without loss of generality, we
assume δ is sufficiently small. Then from Proposition 2.1, almost every δ-pseudo
trajectory comes within γ of x̄−n3 . Thus we complete the proof.

Theorem 2.2 is our main result. Note that dimension variability is the key.

3. Examples

Abraham and Smale [1] give an example of an open set of maps on a four
dimensional manifold with the following property. There are two disjoint compact
invariant sets, Λ1 (a 2-torus on which the map is the Thom diffeomorphism defined
by the linear isomorphism with matrix ( 1 2

1 1 )), and Λ2 (a saddle fixed point whose
stable manifold is one dimensional), and there are a finite number of trajectories
asymptotic to Λ1 as n → −∞ and to Λ2 as n → ∞. For a dense set of maps
the negative limit sets of these trajectories are each equal to Λ1 and for another
dense set at least one of these trajectories has a negative limit set that is a periodic
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orbit, a proper subset of Λ1. While they emphasize Ω-stability and do not mention
shadowability, it is clear that such trajectories cannot be shadowed by trajectories
in nearby systems. It can be shown that the map satisfies our k-cone condition with
k = 1 at least for some choices of the parameter. We could adapt Theorem 2.2 as
well to this non-attracting case and show the existence of a nonshadowable pseudo
trajectory.

In this section we present two other examples. The goal is to show that there
exists an open set of maps for which every point is absolutely nonshadowable.

Example 3.1. Kostelich et al. [16] have considered a map on T 2 given by:

f(y, z) = (2y mod 2π, (y + z) + c sin(y + z) mod 2π)(3.1)

where c is a parameter in a neighborhood of 0.6. The Jacobian matrix of the map
is:

Df(y,z) =
(

2 0
1 + c cos(y + z) 1 + c cos(y + z)

)
Kostelich et al. [16] have proved that f has a dense trajectory, which implies

that T 2 is an attractor as defined in Section 2; also, T 2 continues to have a dense
trajectory under small Cr-perturbations, where r > 1. There are two fixed points
of f : (0,0), a source, and (0, π), a saddle. These fixed points are hyperbolic and
persist under small Cr-perturbations. Therefore, there exists an open set of maps
which have dimension variability.

In contrast, no 2-dimensional diffeomorphism may have dimension variability,
because the ω-limit set of a trajectory does not contain a source unless the trajectory
is the source itself.

By Theorem 2.2, in order to show nonshadowability it suffices to show that there
exists a positively invariant 1-cone field. The existence follows from the fact that the
y-coordinate expands by a factor of 2, more than the expansion of the z-coordinate.
Specifically, it can be seen as follows. Let M be a constant which is greater than
(1+ c)/(1− c), A tangent vector (1, t) at (y, z) maps to (2, (1+ t)(1+ c cos(y +z)))
at f(y, z). If |t| ≤ M , then |(1 + t)(1 + c cos(y + z))| ≤ (1 + c)(1 + |t|) < 2M .
Therefore {(u, v) : |v| ≤ M |u|} is a positively invariant 1-cone field for f . Indeed,
it continues to be positively invariant under small Cr-perturbations. Thus there
exists an open set of maps for which every point is absolutely nonshadowable.

We remark that it is also easy to make a three dimensional example in which
there is a two dimensional attracting torus which has the described dynamics. This
can be done by crossing the above example with a circle on which the map has an
attracting fixed point.

Example 3.2. The torus map in Example 3.1 is not one-to-one. However, we can
use a technique introduced by Smale [22] to build a diffeomorphism example from
an endomorphism one. The idea is to replace the circle map (the y-component
of Equation (3.1)) by a “solenoid” diffeomorphism on a solid torus S1 ×D2. Let
M = S3× S1, and let M = S1 × D2 × S1. M is a submanifold (with boundary)
of M . On M we can define coordinates (t, z, s) such that t ∈ S1, z ∈ D2 (z is a
complex number), and s ∈ S1. Define ḡ : M → M (see [19], pages 294–298) as
(t, z, s) 7→ (2t, 1

4z + 1
2e2πti, (t + s) + c sin(t + s)) where c is in a neighborhood of

0.6. ḡ can be extended to a global diffeomorphism g : M → M such that g|M = ḡ.
It follows immediately that there is an attractor A ⊂ S1 × D2 × S1, which is
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the Cartesian product of a solenoid attractor in S1 × D2 and S1. Using similar
arguments to those in Kostelich et al. [16], we can prove that A continues to be an
attractor. Similarly to Example 3.1, the attractor A has dimension variability and
a positively invariant 1-cone field. Therefore Theorem 2.2 implies that every point
in the basin of A is absolutely nonshadowable. Indeed, ḡ can be extended in such a
way that A attracts almost every trajectory in S3 × S1. Thus there exists an open
set of diffeomorphisms for which every point is absolutely nonshadowable.

We thank Leny Nusse, Lan Wen and Vadim Kaloshin for helpful communications.
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